Core Audio is the digital audio infrastructure of iOS and OS X. It includes a set of software frameworks designed to handle the audio needs in your applications. Read this chapter to learn what you can do with Core Audio.
Core Audio in iOS and OS X
Inspired by Dick Koch's award-winning TeXShop program for Mac OS X, it makes entry into the TeX world easier for those using desktop operating systems other than OS X. It provides an integrated, easy-to-use environment for users on other platforms particularly GNU/Linux and Windows and features a clean, simple interface accessible to casual.
- Ok so here's the deal, We're running a show on a new mac-OS Mojave version: 10.14.2 (3 GHz, Intel i5 Processor, 8 GB memory) and Using Qlab version: 4.4.4. We have the computer hooked up to our light board & sound system with a USB splitter and as far as I know the sound.
- Discover great Keynote templates on Envato Elements or GraphicRiver. While not specifically Mac slideshow software, Google Slides is web-based. It's part of the Google Drive suite, which can be accessed from a Mac or a PC as long as you've got an internet connection.
- Leawo Music Recorder for Mac is a smart OSX sound editor which can automatically add music tags when recording music. It also lets you manually edit those sound files in the library. The Info download function can automatically match music tags to recorded sounds.
- To install the sounds, Create a folder anywhere and put the sounds in that folder, then right click the desktop and click personalize, click Sounds then select a sound (Like Asterisk) and click browse. Look for the folder and choose a sound. Repeat this for all the other sounds. Iamtheboss38 Jan 18, 2021.
Core Audio is tightly integrated into iOS and OS X for high performance and low latency.
In OS X, the majority of Core Audio services are layered on top of the Hardware Abstraction Layer (HAL) as shown in Figure 1-1. Audio signals pass to and from hardware through the HAL. You can access the HAL using Audio Hardware Services in the Core Audio framework when you require real-time audio. The Core MIDI (Musical Instrument Digital Interface) framework provides similar interfaces for working with MIDI data and devices.
You find Core Audio application-level services in the Audio Toolbox and Audio Unit frameworks.
Use Audio Queue Services to record, play back, pause, loop, and synchronize audio.
Use Audio File, Converter, and Codec Services to read and write from disk and to perform audio data format transformations. In OS X you can also create custom codecs.
Use Audio Unit Services and Audio Processing Graph Services (represented in the figure as “Audio units”) to host audio units (audio plug-ins) in your application. In OS X you can also create custom audio units to use in your application or to provide for use in other applications.
Use Music Sequencing Services to play MIDI-based control and music data.
Use Core Audio Clock Services for audio and MIDI synchronization and time format management.
Use System Sound Services (represented in the figure as “System sounds”) to play system sounds and user-interface sound effects.
Core Audio in iOS is optimized for the computing resources available in a battery-powered mobile platform. There is no API for services that must be managed very tightly by the operating system—specifically, the HAL and the I/O Kit. However, there are additional services in iOS not present in OS X. For example, Audio Session Services lets you manage the audio behavior of your application in the context of a device that functions as a mobile telephone and an iPod. Figure 1-2 provides a high-level view of the audio architecture in iOS.
A Little About Digital Audio and Linear PCM
Most Core Audio services use and manipulate audio in linear pulse-code-modulated (linear PCM) format, the most common uncompressed digital audio data format. Digital audio recording creates PCM data by measuring an analog (real world) audio signal’s magnitude at regular intervals (the sampling rate) and converting each sample to a numerical value. Standard compact disc (CD) audio uses a sampling rate of 44.1 kHz, with a 16-bit integer describing each sample—constituting the resolution or bit depth.
A sample is single numerical value for a single channel.
A frame is a collection of time-coincident samples. For instance, a stereo sound file has two samples per frame, one for the left channel and one for the right channel.
A packet is a collection of one or more contiguous frames. In linear PCM audio, a packet is always a single frame. In compressed formats, it is typically more. A packet defines the smallest meaningful set of frames for a given audio data format.
In linear PCM audio, a sample value varies linearly with the amplitude of the original signal that it represents. For example, the 16-bit integer samples in standard CD audio allow 65,536 possible values between silence and maximum level. The difference in amplitude from one digital value to the next is always the same.
Core Audio data structures, declared in the CoreAudioTypes.h
header file, can describe linear PCM at any sample rate and bit depth. Audio Data Formats goes into more detail on this topic.
In OS X, Core Audio expects audio data to be in native-endian, 32-bit floating-point, linear PCM format. You can use Audio Converter Services to translate audio data between different linear PCM variants. You also use these converters to translate between linear PCM and compressed audio formats such as MP3 and Apple Lossless. Core Audio in OS X supplies codecs to translate most common digital audio formats (though it does not supply an encoder for converting to MP3).
iOS uses integer and fixed-point audio data. The result is faster calculations and less battery drain when processing audio. iOS provides a Converter audio unit and includes the interfaces from Audio Converter Services. For details on the so-called canonical audio data formats for iOS and OS X, see Canonical Audio Data Formats.
In iOS and OS X, Core Audio supports most common file formats for storing and playing audio data, as described in iPhone Audio File Formats and Supported Audio File and Data Formats in OS X.
Audio Units
Audio units are software plug-ins that process audio data. In OS X, a single audio unit can be used simultaneously by an unlimited number of channels and applications.
iOS provides a set of audio units optimized for efficiency and performance on a mobile platform. You can develop audio units for use in your iOS application. Because you must statically link custom audio unit code into your application, audio units that you develop cannot be used by other applications in iOS.
The audio units provided in iOS do not have user interfaces. Their main use is to provide low-latency audio in your application. For more on iPhone audio units, see Core Audio Plug-ins: Audio Units and Codecs.
In Mac apps that you develop, you can use system-supplied or third-party-supplied audio units. You can also develop an audio unit as a product in its own right. Users can employ your audio units in applications such as GarageBand and Logic Studio, as well as in many other audio unit hosting applications.
Some Mac audio units work behind the scenes to simplify common tasks for you—such as splitting a signal or interfacing with hardware. Others appear onscreen, with their own user interfaces, to offer signal processing and manipulation. For example, effect units can mimic their real-world counterparts, such as a guitarist’s distortion box. Other audio units generate signals, whether programmatically or in response to MIDI input.
Some examples of audio units are:
A signal processor (for example, a high-pass filter, reverb, compressor, or distortion unit). Each of these is generically an effect unit and performs digital signal processing (DSP) in a way similar to a hardware effects box or outboard signal processor.
A musical instrument or software synthesizer. These are called instrument units (or, sometimes, music devices) and typically generate musical notes in response to MIDI input.
A signal source. Unlike an instrument unit, a generator unit is not activated by MIDI input but rather through code. For example, a generator unit might calculate and generate sine waves, or it might source the data from a file or network stream.
An interface to hardware input or output. For more information on I/O units, see The Hardware Abstraction Layer and Interfacing with Hardware.
A format converter. A converter unit can translate data between two linear PCM variants, merge or split audio streams, or perform time and pitch changes. See Core Audio Plug-ins: Audio Units and Codecs for details.
A mixer or panner. A mixer unit can combine audio tracks. A panner unit can apply stereo or 3D panning effects.
An effect unit that works offline. An offline effect unit performs work that is either too processor-intensive or simply impossible in real time. For example, an effect that performs time reversal on a file must be applied offline.
In OS X you can mix and match audio units in whatever permutations you or your end user requires. Figure 1-3 shows a simple chain of audio units. There’s an instrument unit to generate an audio signal based on control data received from an outboard MIDI keyboard. The generated audio then passes through effect units to apply bandpass filtering and distortion. A chain of audio units is called an audio processing graph.
If you develop audio DSP code that you want to make available to multiple applications, you should package your code as an audio unit.
If you develop Mac audio apps, supporting audio units lets you and your users leverage the library of existing audio units (both third-party and Apple-supplied) to extend the capabilities of your application.
To experiment with audio units in OS X, see the AU Lab application, available in the Xcode Tools installation at /Developer/Applications/Audio
. AU Lab lets you mix and match audio units to build a signal chain from an audio source through an output device.
See System-Supplied Audio Units in OS X for a listing of the audio units that ship with OS X v10.5 and iOS 2.0.
The Hardware Abstraction Layer
Core Audio uses a hardware abstraction layer (HAL) to provide a consistent and predictable interface for applications to interact with hardware. The HAL can also provide timing information to your application to simplify synchronization or to adjust for latency.
In most cases, your code does not interact directly with the HAL. Apple supplies a special audio unit—called the AUHAL unit in OS X and the AURemoteIO unit in iOS—which allows you to pass audio from another audio unit to hardware. Similarly, input coming from hardware is routed through the AUHAL unit (or the AURemoteIO unit in iOS) and made available to subsequent audio units, as shown in Figure 1-4.
The AUHAL unit (or AURemoteIO unit) also takes care of any data conversion or channel mapping required to translate audio data between audio units and hardware.
MIDI Support in OS X
Core MIDI is the part of Core Audio that supports the MIDI protocol. (MIDI is not available in iOS.) Core MIDI allows applications to communicate with MIDI devices such as keyboards and guitars. Input from MIDI devices can be stored as MIDI data or used to control an instrument unit. Applications can also send MIDI data to MIDI devices.
Core MIDI uses abstractions to represent MIDI devices and mimic standard MIDI cable connections (MIDI In, MIDI Out, and MIDI Thru) while providing low-latency input and output. Core Audio also supports a music player programming interface that you can use to play MIDI-based control or music data.
For more details about the capabilities of the MIDI protocol, see the MIDI Manufacturers Association site, http://midi.org.
The Audio MIDI Setup Application
The Audio MIDI Setup application lets users:
Specify the default audio input and output devices.
Configure properties for input and output devices, such as sampling rate and bit depth.
Map audio channels to available speakers (for stereo, 5.1 surround, and so on).
Create aggregate devices. (For information about aggregate devices, see Using Aggregate Devices.)
Configure MIDI networks and MIDI devices.
You find Audio MIDI Setup in the /Applications/Utilities
folder.
A Mac Core Audio Recording Studio
A traditional—non-computer-based—recording studio can serve as a conceptual framework for approaching Core Audio. Such a studio may have a few “real” instruments and effect units feeding a mixing desk, as shown in Figure 1-5. The mixer can route its output to studio monitors and a recording device (shown here, in a rather retro fashion, as a tape recorder).
Many of the pieces in a traditional studio can be replaced by software-based equivalents—all of which you have already met in this chapter. On a desktop computing platform, digital audio applications can record, synthesize, edit, mix, process, and play back audio. They can also record, edit, process, and play back MIDI data, interfacing with both hardware and software MIDI instruments. Mac apps rely on Core Audio services to handle all of these tasks, as shown in Figure 1-6.
As you can see, audio units can make up much of an audio signal chain. Other Core Audio interfaces provide application-level support, allowing applications to obtain audio or MIDI data in various formats and output it to files or output devices. Core Audio Services discusses the constituent interfaces of Core Audio in more detail.
Core Audio lets you do much more than mimic a recording studio on a desktop computer. You can use it for everything from playing sound effects to creating compressed audio files to providing an immersive sonic experience for game players.
On a mobile device such as an iPhone or iPod touch, the audio environment and computing resources are optimized to extend battery life. After all, an iPhone’s most essential identity is as a telephone. From a development or user perspective, it wouldn’t make sense to place an iPhone at the heart of a virtual recording studio. On the other hand, an iPhone’s special capabilities—including extreme portability, built-in Bonjour networking, multitouch interface, and accelerometer and location APIs—let you imagine and create audio applications that were never possible on the desktop.
Mac Development Using the Core Audio SDK
To assist audio developers, Apple supplies a software development kit (SDK) for Core Audio in OS X. The SDK contains many code samples covering both audio and MIDI services as well as diagnostic tools and test applications. Examples include:
A test application to interact with the global audio state of the system, including attached hardware devices (HALLab).
A reference audio unit hosting application (AU Lab). The AU Lab application is essential for testing audio units you create, as described in Audio Units.
Sample code to load and play audio files (PlayFile) and MIDI files (PlaySequence).
This document points to additional examples in the Core Audio SDK that illustrate how to accomplish common tasks.
The SDK also contains a C++ framework for building audio units for OS X. This framework simplifies the amount of work you need to do by insulating you from the details of the Component Manager plug-in interface. The SDK also contains templates for common audio unit types; for the most part, you only need override those methods that apply to your custom audio unit. Some sample audio unit projects show these templates and frameworks in use. For more details on using the framework and templates, see Audio Unit Programming Guide.
Note: Apple supplies the C++ audio unit framework as sample code to assist audio unit development. Feel free to modify and adapt the framework based on your needs.
The Core Audio SDK assumes you will use Xcode as your development environment.
Sound Design Labo Mac Os Catalina
You can download the latest SDK from http://developer.apple.com/sdk/. After installation, the SDK files are located in /Developer/Examples/CoreAudio
. The HALLab and AU Lab applications are located in /Developer/Applications/Audio
.
Copyright © 2017 Apple Inc. All Rights Reserved. Terms of Use Privacy Policy Updated: 2017-10-30
Most of people record and edit sounds with their computers. If you come to a Windows PC background, you may be familiar to a small application named Sound Recorder. So what options do we have on Mac OS? We have tested some mainstream sound editors Mac version and we are here to tell you the top 5 OSX sound editors through our test.
Part 1: 5 OS X Sound Editor Software to Edit Sound on Mac
By searching on Google or other searching engines with the keywords like 'osx sound editor' or 'sound editor for os x', you could get thousands of answers. Through carefully comparison, we have collected top 5 OSX sound editor software for you to edit sound file on Mac OS X. Check them below.
1. Leawo Music Recorder for Mac
Leawo Music Recorder for Mac is a smart OSX sound editor which can automatically add music tags when recording music. It also lets you manually edit those sound files in the library. The Info download function can automatically match music tags to recorded sounds. You can change album photo for your recording sound and edit the title, artist, cover, genre, etc. You can also manage music library and playlist effectively and add recorded music files to iTunes/Playlists with 1-click.
Leawo Music Recorder for Mac could record any audio on Mac and then save in M4A, MP3 or WAV formats. That makes you create ring-tones and CD easily. Online FM Radios & Podcast can be recorded for free by the tool. And it will auto detect your song name while recording and add music tags into it.
2. TwistedWave Online Sound Editor
TwistedWave is a sound editor Mac as well as for PC users (https://twistedwave.com/online/). It is an online sound editor which you don't need to install any extension or app on your Mac. All the audio is stored and processed on the server, so after registering an ID you can save and continue your editing work in different computers. You can add silence or add many effects to the sound. The app is especially convenient for those public computer users.
3. OcenAudio
OcenAudio is a completely free and feature-packed cross-platform Mac sound editor. The app supports a huge number of file types including .MP3, .WAV, .FLAC and .WMA. It cuts the sound quite easily, and it can compress the huge files into smaller formats so that you can free more space for your Mac.
Sound Design Labo Mac Os X
4. Adobe Audition CC
Everyone knows Adobe product always product software. Adobe Audition is an expensive but strong Mac sound editor for professional users. It is designed for mixing, finishing, and precision editing audio sounds. This powerful audio workstation is designed to accelerate video production work-flows and audio finishing — and deliver a polished mix with pristine sound.
5. Ardour
Ardour is another professional Mac sound editor which can record, edit and mix sounds. It is an open source, collaborative effort of a worldwide team including musicians, programmers, and professional recording engineers. So it can be expanded using the hundreds of plugins available to users. It is an excellent OSX sound editor for composers, musicians, and sound engineers, but may be too complex for simple podcasts and quick audio fixes.
Part 2: The Best OSX Sound Editor - Leawo Music Recorder for Mac
Leawo Music Recorder for Mac is a user friendly sound editor Mac. Users can easily figure out how to use it to edit sounds. It has a clean UI interface like a music player, you can record your sounds and export them as M4A, MP3 or WAV and copy to iTunes by one click. No matter what sounds you need - from sound card or microphone, it is easy to get high quality sound files as you want. The unique function of Leawo Music Recorder is that you can edit music tags for your sounds. When you are recording your sounds, the system will analyze the sounds and download the music information to the file. And you can edit the music tag manually and change pretty album photos. It is the best Mac sound editor for normal users.
Leawo Music Recorder
☉ Record any sound from computer and microphone audio.
☉ Record music from 1000+ music sites: YouTube, Facebook, etc.
☉ Schedule music recording via the recording task scheduler.
☉ Automatically/manually add music tags: artist, album, etc.
☉ Save recordings to either WAV/MP3/W4A format.
Download and install this Mac OSX sound editor software on your Mac computer and then launch it. It works on Mac OS 10.6 and later. Here's how to edit sound file on Mac OS X with this OSX sound editor software.
Step 1: Set audio source
If you need to edit sound files already in your computer, click the microphone button and go to 'Audio Source' and choose 'Record Computer Audio' mode. Then you are able to edit your sound by record them into the format you need or cut the desired parts of the music.
If you need to record sound then edit the track, choose 'Record Built-in Audio' and select the microphone you need for recording.
Step 2. Select output format
Head to the menu bar of this program and then successively open 'Leawo Music Recorder > Preferences > Format' option to set output sound file format as M4A, MP3 or WAV. Change bit rate(128-320 Kbps) and sample rate(22050-48000 HZ) for the sound.
Step 3. Choose output directory
Head to Leawo Music Recorder > Preferences > General to choose the output folder for your recordings.
Step 4. Record and edit sound file on Mac OS X
Click on the recording button and start recording. The audio will be recorded by Leawo Music Recorder completely on just one click. And it starts to record only when the sound is detected by the recorder. Click stop or let the recorder stop automatically when the sound fades. Leawo Music Recorder downloads the music information from its music database automatically. After finishing all the recording process, an audio file will be saved on your Mac.
Step 5. Edit music tags for the sound
Sound Design Labo Mac Os 11
Leawo Music Recorder for Mac not only updates the music tags information automatically in batch mode but also lets you modify the music tags manually. Right click and choose download information, it will search album picture, artist, year, song name and insert to your songs from Leawo music database. Let Leawo Music Recorder do the sorting task for you.
For Windows computer, please turn to Leawo Music Recorder to record and edit sound file on Windows computer with ease.